33 Data Mining Query Languages
نویسنده
چکیده
Many Data Mining algorithms enable to extract different types of patterns from data (e.g., local patterns like itemsets and association rules, models like classifiers). To support the whole knowledge discovery process, we need for integrated systems which can deal either with patterns and data. The inductive database approach has emerged as an unifying framework for such systems. Following this database perspective, knowledge discovery processes become querying processes for which query languages have to be designed. In the prolific field of association rule mining, different proposals of query languages have been made to support the more or less declarative specification of both data and pattern manipulations. In this chapter, we survey some of these proposals. It enables to identify nowadays shortcomings and to point out some promising directions of research in this area.
منابع مشابه
انتخاب مناسبترین زبان پرسوجو برای استفاده از فراپیوندها جهت استخراج دادهها در حالت دیتالوگ در سامانه پایگاه داده استنتاجی DES
Deductive Database systems are designed based on a logical data model. Data (as opposed to Relational Databases Management System (RDBMS) in which data stored in tables) are saved as facts in a Deductive Database system. Datalog Educational System (DES) is a Deductive Database system that Datalog mode is the default mode in this system. It can extract data to use outer joins with three query la...
متن کاملLanguages for Learning and Mining
Applying machine learning and data mining to novel applications is cumbersome. This observation is the prime motivation for the interest in languages for learning and mining. This note provides a gentle introduction to three types of languages that support machine learning and data mining: inductive query languages, which extend database query languages with primitives for mining and learning, ...
متن کاملQuery Languages Supporting Descriptive Rule Mining: A Comparative Study
Recently, inductive databases (IDBs) have been proposed to tackle the problem of knowledge discovery from huge databases. With an IDB, the user/analyst performs a set of very different operations on data using a query language, powerful enough to support all the required manipulations, such as data preprocessing, pattern discovery and pattern post-processing. We provide a comparison between thr...
متن کاملA Reuse-based Spatial Data Preparation Framework for Data Mining
The constant increase in use of geographic data in different application domains has resulted in large amounts of data stored in spatial databases and in the desire of data mining. Many solutions for spatial data mining have been proposed. Most create data mining languages or extend existing query languages to support data mining operations. This paper presents an interoperable framework for sp...
متن کاملA Practical Comparative Study Of Data Mining Query Languages
An important motivation for the development of inductive databases and query languages for data mining is that such an approach will increase the flexibility with which data mining can be performed. By integrating data mining more closely into a database querying framework, separate steps such as data preprocessing, data mining, and postprocessing of the results, can all be handled using one qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013